3.2.3 \(\int \frac {x^2}{\sqrt {b \sqrt {x}+a x}} \, dx\) [103]

3.2.3.1 Optimal result
3.2.3.2 Mathematica [A] (verified)
3.2.3.3 Rubi [A] (verified)
3.2.3.4 Maple [A] (verified)
3.2.3.5 Fricas [F(-1)]
3.2.3.6 Sympy [A] (verification not implemented)
3.2.3.7 Maxima [F]
3.2.3.8 Giac [A] (verification not implemented)
3.2.3.9 Mupad [F(-1)]

3.2.3.1 Optimal result

Integrand size = 19, antiderivative size = 174 \[ \int \frac {x^2}{\sqrt {b \sqrt {x}+a x}} \, dx=\frac {63 b^4 \sqrt {b \sqrt {x}+a x}}{64 a^5}-\frac {21 b^3 \sqrt {x} \sqrt {b \sqrt {x}+a x}}{32 a^4}+\frac {21 b^2 x \sqrt {b \sqrt {x}+a x}}{40 a^3}-\frac {9 b x^{3/2} \sqrt {b \sqrt {x}+a x}}{20 a^2}+\frac {2 x^2 \sqrt {b \sqrt {x}+a x}}{5 a}-\frac {63 b^5 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {b \sqrt {x}+a x}}\right )}{64 a^{11/2}} \]

output
-63/64*b^5*arctanh(a^(1/2)*x^(1/2)/(b*x^(1/2)+a*x)^(1/2))/a^(11/2)+63/64*b 
^4*(b*x^(1/2)+a*x)^(1/2)/a^5+21/40*b^2*x*(b*x^(1/2)+a*x)^(1/2)/a^3-9/20*b* 
x^(3/2)*(b*x^(1/2)+a*x)^(1/2)/a^2+2/5*x^2*(b*x^(1/2)+a*x)^(1/2)/a-21/32*b^ 
3*x^(1/2)*(b*x^(1/2)+a*x)^(1/2)/a^4
 
3.2.3.2 Mathematica [A] (verified)

Time = 0.33 (sec) , antiderivative size = 113, normalized size of antiderivative = 0.65 \[ \int \frac {x^2}{\sqrt {b \sqrt {x}+a x}} \, dx=\frac {\sqrt {b \sqrt {x}+a x} \left (315 b^4-210 a b^3 \sqrt {x}+168 a^2 b^2 x-144 a^3 b x^{3/2}+128 a^4 x^2\right )}{320 a^5}-\frac {63 b^5 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {b \sqrt {x}+a x}}{b+a \sqrt {x}}\right )}{64 a^{11/2}} \]

input
Integrate[x^2/Sqrt[b*Sqrt[x] + a*x],x]
 
output
(Sqrt[b*Sqrt[x] + a*x]*(315*b^4 - 210*a*b^3*Sqrt[x] + 168*a^2*b^2*x - 144* 
a^3*b*x^(3/2) + 128*a^4*x^2))/(320*a^5) - (63*b^5*ArcTanh[(Sqrt[a]*Sqrt[b* 
Sqrt[x] + a*x])/(b + a*Sqrt[x])])/(64*a^(11/2))
 
3.2.3.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 195, normalized size of antiderivative = 1.12, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.421, Rules used = {1924, 1134, 1134, 1134, 1134, 1160, 1091, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {a x+b \sqrt {x}}} \, dx\)

\(\Big \downarrow \) 1924

\(\displaystyle 2 \int \frac {x^{5/2}}{\sqrt {\sqrt {x} b+a x}}d\sqrt {x}\)

\(\Big \downarrow \) 1134

\(\displaystyle 2 \left (\frac {x^2 \sqrt {a x+b \sqrt {x}}}{5 a}-\frac {9 b \int \frac {x^2}{\sqrt {\sqrt {x} b+a x}}d\sqrt {x}}{10 a}\right )\)

\(\Big \downarrow \) 1134

\(\displaystyle 2 \left (\frac {x^2 \sqrt {a x+b \sqrt {x}}}{5 a}-\frac {9 b \left (\frac {x^{3/2} \sqrt {a x+b \sqrt {x}}}{4 a}-\frac {7 b \int \frac {x^{3/2}}{\sqrt {\sqrt {x} b+a x}}d\sqrt {x}}{8 a}\right )}{10 a}\right )\)

\(\Big \downarrow \) 1134

\(\displaystyle 2 \left (\frac {x^2 \sqrt {a x+b \sqrt {x}}}{5 a}-\frac {9 b \left (\frac {x^{3/2} \sqrt {a x+b \sqrt {x}}}{4 a}-\frac {7 b \left (\frac {x \sqrt {a x+b \sqrt {x}}}{3 a}-\frac {5 b \int \frac {x}{\sqrt {\sqrt {x} b+a x}}d\sqrt {x}}{6 a}\right )}{8 a}\right )}{10 a}\right )\)

\(\Big \downarrow \) 1134

\(\displaystyle 2 \left (\frac {x^2 \sqrt {a x+b \sqrt {x}}}{5 a}-\frac {9 b \left (\frac {x^{3/2} \sqrt {a x+b \sqrt {x}}}{4 a}-\frac {7 b \left (\frac {x \sqrt {a x+b \sqrt {x}}}{3 a}-\frac {5 b \left (\frac {\sqrt {x} \sqrt {a x+b \sqrt {x}}}{2 a}-\frac {3 b \int \frac {\sqrt {x}}{\sqrt {\sqrt {x} b+a x}}d\sqrt {x}}{4 a}\right )}{6 a}\right )}{8 a}\right )}{10 a}\right )\)

\(\Big \downarrow \) 1160

\(\displaystyle 2 \left (\frac {x^2 \sqrt {a x+b \sqrt {x}}}{5 a}-\frac {9 b \left (\frac {x^{3/2} \sqrt {a x+b \sqrt {x}}}{4 a}-\frac {7 b \left (\frac {x \sqrt {a x+b \sqrt {x}}}{3 a}-\frac {5 b \left (\frac {\sqrt {x} \sqrt {a x+b \sqrt {x}}}{2 a}-\frac {3 b \left (\frac {\sqrt {a x+b \sqrt {x}}}{a}-\frac {b \int \frac {1}{\sqrt {\sqrt {x} b+a x}}d\sqrt {x}}{2 a}\right )}{4 a}\right )}{6 a}\right )}{8 a}\right )}{10 a}\right )\)

\(\Big \downarrow \) 1091

\(\displaystyle 2 \left (\frac {x^2 \sqrt {a x+b \sqrt {x}}}{5 a}-\frac {9 b \left (\frac {x^{3/2} \sqrt {a x+b \sqrt {x}}}{4 a}-\frac {7 b \left (\frac {x \sqrt {a x+b \sqrt {x}}}{3 a}-\frac {5 b \left (\frac {\sqrt {x} \sqrt {a x+b \sqrt {x}}}{2 a}-\frac {3 b \left (\frac {\sqrt {a x+b \sqrt {x}}}{a}-\frac {b \int \frac {1}{1-a x}d\frac {\sqrt {x}}{\sqrt {\sqrt {x} b+a x}}}{a}\right )}{4 a}\right )}{6 a}\right )}{8 a}\right )}{10 a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle 2 \left (\frac {x^2 \sqrt {a x+b \sqrt {x}}}{5 a}-\frac {9 b \left (\frac {x^{3/2} \sqrt {a x+b \sqrt {x}}}{4 a}-\frac {7 b \left (\frac {x \sqrt {a x+b \sqrt {x}}}{3 a}-\frac {5 b \left (\frac {\sqrt {x} \sqrt {a x+b \sqrt {x}}}{2 a}-\frac {3 b \left (\frac {\sqrt {a x+b \sqrt {x}}}{a}-\frac {b \text {arctanh}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {a x+b \sqrt {x}}}\right )}{a^{3/2}}\right )}{4 a}\right )}{6 a}\right )}{8 a}\right )}{10 a}\right )\)

input
Int[x^2/Sqrt[b*Sqrt[x] + a*x],x]
 
output
2*((x^2*Sqrt[b*Sqrt[x] + a*x])/(5*a) - (9*b*((x^(3/2)*Sqrt[b*Sqrt[x] + a*x 
])/(4*a) - (7*b*((x*Sqrt[b*Sqrt[x] + a*x])/(3*a) - (5*b*((Sqrt[x]*Sqrt[b*S 
qrt[x] + a*x])/(2*a) - (3*b*(Sqrt[b*Sqrt[x] + a*x]/a - (b*ArcTanh[(Sqrt[a] 
*Sqrt[x])/Sqrt[b*Sqrt[x] + a*x]])/a^(3/2)))/(4*a)))/(6*a)))/(8*a)))/(10*a) 
)
 

3.2.3.3.1 Defintions of rubi rules used

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1091
Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[Int[1/(1 
 - c*x^2), x], x, x/Sqrt[b*x + c*x^2]], x] /; FreeQ[{b, c}, x]
 

rule 1134
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[e*(d + e*x)^(m - 1)*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 
 1))), x] + Simp[(m + p)*((2*c*d - b*e)/(c*(m + 2*p + 1)))   Int[(d + e*x)^ 
(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[ 
c*d^2 - b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2 
*p]
 

rule 1160
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol 
] :> Simp[e*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b 
*e)/(2*c)   Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] 
 && NeQ[p, -1]
 

rule 1924
Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp 
[1/n   Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x 
], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] &&  !IntegerQ[p] && NeQ[n, j 
] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1 
]
 
3.2.3.4 Maple [A] (verified)

Time = 2.22 (sec) , antiderivative size = 151, normalized size of antiderivative = 0.87

method result size
derivativedivides \(\frac {2 x^{2} \sqrt {b \sqrt {x}+a x}}{5 a}-\frac {9 b \left (\frac {x^{\frac {3}{2}} \sqrt {b \sqrt {x}+a x}}{4 a}-\frac {7 b \left (\frac {x \sqrt {b \sqrt {x}+a x}}{3 a}-\frac {5 b \left (\frac {\sqrt {x}\, \sqrt {b \sqrt {x}+a x}}{2 a}-\frac {3 b \left (\frac {\sqrt {b \sqrt {x}+a x}}{a}-\frac {b \ln \left (\frac {\frac {b}{2}+a \sqrt {x}}{\sqrt {a}}+\sqrt {b \sqrt {x}+a x}\right )}{2 a^{\frac {3}{2}}}\right )}{4 a}\right )}{6 a}\right )}{8 a}\right )}{5 a}\) \(151\)
default \(-\frac {\sqrt {b \sqrt {x}+a x}\, \left (544 \left (b \sqrt {x}+a x \right )^{\frac {3}{2}} \sqrt {x}\, a^{\frac {7}{2}} b -256 x \left (b \sqrt {x}+a x \right )^{\frac {3}{2}} a^{\frac {9}{2}}-880 \left (b \sqrt {x}+a x \right )^{\frac {3}{2}} a^{\frac {5}{2}} b^{2}+1300 \sqrt {b \sqrt {x}+a x}\, \sqrt {x}\, a^{\frac {5}{2}} b^{3}+650 \sqrt {b \sqrt {x}+a x}\, a^{\frac {3}{2}} b^{4}-1280 a^{\frac {3}{2}} \sqrt {\sqrt {x}\, \left (a \sqrt {x}+b \right )}\, b^{4}+640 a \ln \left (\frac {2 a \sqrt {x}+2 \sqrt {\sqrt {x}\, \left (a \sqrt {x}+b \right )}\, \sqrt {a}+b}{2 \sqrt {a}}\right ) b^{5}-325 \ln \left (\frac {2 \sqrt {b \sqrt {x}+a x}\, \sqrt {a}+2 a \sqrt {x}+b}{2 \sqrt {a}}\right ) a \,b^{5}\right )}{640 \sqrt {\sqrt {x}\, \left (a \sqrt {x}+b \right )}\, a^{\frac {13}{2}}}\) \(223\)

input
int(x^2/(b*x^(1/2)+a*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
2/5*x^2*(b*x^(1/2)+a*x)^(1/2)/a-9/5*b/a*(1/4*x^(3/2)*(b*x^(1/2)+a*x)^(1/2) 
/a-7/8*b/a*(1/3*x*(b*x^(1/2)+a*x)^(1/2)/a-5/6*b/a*(1/2*x^(1/2)*(b*x^(1/2)+ 
a*x)^(1/2)/a-3/4*b/a*((b*x^(1/2)+a*x)^(1/2)/a-1/2*b/a^(3/2)*ln((1/2*b+a*x^ 
(1/2))/a^(1/2)+(b*x^(1/2)+a*x)^(1/2))))))
 
3.2.3.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {b \sqrt {x}+a x}} \, dx=\text {Timed out} \]

input
integrate(x^2/(b*x^(1/2)+a*x)^(1/2),x, algorithm="fricas")
 
output
Timed out
 
3.2.3.6 Sympy [A] (verification not implemented)

Time = 0.42 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.05 \[ \int \frac {x^2}{\sqrt {b \sqrt {x}+a x}} \, dx=2 \left (\begin {cases} \sqrt {a x + b \sqrt {x}} \left (\frac {x^{2}}{5 a} - \frac {9 b x^{\frac {3}{2}}}{40 a^{2}} + \frac {21 b^{2} x}{80 a^{3}} - \frac {21 b^{3} \sqrt {x}}{64 a^{4}} + \frac {63 b^{4}}{128 a^{5}}\right ) - \frac {63 b^{5} \left (\begin {cases} \frac {\log {\left (2 \sqrt {a} \sqrt {a x + b \sqrt {x}} + 2 a \sqrt {x} + b \right )}}{\sqrt {a}} & \text {for}\: \frac {b^{2}}{a} \neq 0 \\\frac {\left (\sqrt {x} + \frac {b}{2 a}\right ) \log {\left (\sqrt {x} + \frac {b}{2 a} \right )}}{\sqrt {a \left (\sqrt {x} + \frac {b}{2 a}\right )^{2}}} & \text {otherwise} \end {cases}\right )}{256 a^{5}} & \text {for}\: a \neq 0 \\\frac {2 \left (b \sqrt {x}\right )^{\frac {11}{2}}}{11 b^{6}} & \text {for}\: b \neq 0 \\\tilde {\infty } x^{3} & \text {otherwise} \end {cases}\right ) \]

input
integrate(x**2/(b*x**(1/2)+a*x)**(1/2),x)
 
output
2*Piecewise((sqrt(a*x + b*sqrt(x))*(x**2/(5*a) - 9*b*x**(3/2)/(40*a**2) + 
21*b**2*x/(80*a**3) - 21*b**3*sqrt(x)/(64*a**4) + 63*b**4/(128*a**5)) - 63 
*b**5*Piecewise((log(2*sqrt(a)*sqrt(a*x + b*sqrt(x)) + 2*a*sqrt(x) + b)/sq 
rt(a), Ne(b**2/a, 0)), ((sqrt(x) + b/(2*a))*log(sqrt(x) + b/(2*a))/sqrt(a* 
(sqrt(x) + b/(2*a))**2), True))/(256*a**5), Ne(a, 0)), (2*(b*sqrt(x))**(11 
/2)/(11*b**6), Ne(b, 0)), (zoo*x**3, True))
 
3.2.3.7 Maxima [F]

\[ \int \frac {x^2}{\sqrt {b \sqrt {x}+a x}} \, dx=\int { \frac {x^{2}}{\sqrt {a x + b \sqrt {x}}} \,d x } \]

input
integrate(x^2/(b*x^(1/2)+a*x)^(1/2),x, algorithm="maxima")
 
output
integrate(x^2/sqrt(a*x + b*sqrt(x)), x)
 
3.2.3.8 Giac [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 109, normalized size of antiderivative = 0.63 \[ \int \frac {x^2}{\sqrt {b \sqrt {x}+a x}} \, dx=\frac {1}{320} \, \sqrt {a x + b \sqrt {x}} {\left (2 \, {\left (4 \, {\left (2 \, \sqrt {x} {\left (\frac {8 \, \sqrt {x}}{a} - \frac {9 \, b}{a^{2}}\right )} + \frac {21 \, b^{2}}{a^{3}}\right )} \sqrt {x} - \frac {105 \, b^{3}}{a^{4}}\right )} \sqrt {x} + \frac {315 \, b^{4}}{a^{5}}\right )} + \frac {63 \, b^{5} \log \left ({\left | 2 \, \sqrt {a} {\left (\sqrt {a} \sqrt {x} - \sqrt {a x + b \sqrt {x}}\right )} + b \right |}\right )}{128 \, a^{\frac {11}{2}}} \]

input
integrate(x^2/(b*x^(1/2)+a*x)^(1/2),x, algorithm="giac")
 
output
1/320*sqrt(a*x + b*sqrt(x))*(2*(4*(2*sqrt(x)*(8*sqrt(x)/a - 9*b/a^2) + 21* 
b^2/a^3)*sqrt(x) - 105*b^3/a^4)*sqrt(x) + 315*b^4/a^5) + 63/128*b^5*log(ab 
s(2*sqrt(a)*(sqrt(a)*sqrt(x) - sqrt(a*x + b*sqrt(x))) + b))/a^(11/2)
 
3.2.3.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {b \sqrt {x}+a x}} \, dx=\int \frac {x^2}{\sqrt {a\,x+b\,\sqrt {x}}} \,d x \]

input
int(x^2/(a*x + b*x^(1/2))^(1/2),x)
 
output
int(x^2/(a*x + b*x^(1/2))^(1/2), x)